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The paper presents a genera1 model of a decentralized economy evolving over an infinite time 
horizon. Alternative notions of price systems, competitive equilibria, efficiency and optimaiity are 
introduced. The main results characterize conditions under which the two fundamental theorems 
of welfare economics are valid in such a general framework. 

1. Introduction 

A cornerstone of classical economics is the idea that a competitive 
equilibrium is optimal in the Paretian sense that no alternative feasible 
allocation 0:‘ commodities can improve the lot of one agent without 
worsening the conditions of some other individual. Equally important is the 
converse proposition that any given Pareto optimal allocation can be 
sustained by a competitive equilibrium. A prime achievement of welfare 
economics has been to establish conditions that are, roughly speaking, 
‘necessary and sufIicient’ for the validity of these conclusions in jinite 
economies (i.e., economies in which the numbers of commodities and 
economic agents are finite). On the other hand, it is known that in non-finite 
economies, these propositions may fail even when the sufficient conditions of 
the finite case are met. In this paper we shall restrict our attention to a class 
of infinite horizon economies, typified by van Neumann growth models, in 
which the production possibilities are not constrained by non-producible 
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helpful discussion. 
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factors. For these economies, it is verified that the welfare propositions 
mentioned above hold under conditions closely paralleling those relevant for 
finite economies. The relation between competitive equilibrium and efficiency 
or Pareto optimality for static economies has been reviewed in Koopmans 
(FE;. Skferences to the partial extensions of these results to some infinite 
horizon econumies are given in Majumdar-Mitra-McFadden (1976). No 
attempt will be made, therefore, to review the extensive literature on 
intertemporal efficiency or optimality. In section 2, a general model of a 
dLcentra!ized economy over time is presented. In section 3, various notions 
of price systems, competitive equilibria, efficiency and optimahty are in- 
troduced. The main results in section 4 give necessary and sufficient 
conditions under which a strong competitive equilibrium [see Definition 
(3.5)] is Pareto optimal, and 2 Pareto optimal allocation is a ~ul~ufio~ 
equiiibrium [see Definition (3.6)]. Some other logical connections among the 
various concepts are examined in section 3, with a number of counter- 
examples to possible implications. 

2. A general decentralized economy 

Consider an economy in which the numbers of commodities and economic 
agents tsithi~l each pertod t = 0, 1,2.. . is finite. Each economic agent (con- 
sumer or firm) is assumed to have a.fi,zire life. 

Let 9r denote the commodity space in period t; it is a finite-dimensional 
real linear vector space whose vectors have a component for each commodity 
existing in the economy in period t. Define the real linear vector space (99 
consisting of all infinite sequences (or programs) or commodity vectors, 13 
= (t-6, t’l +..) with z*‘E~, for 1:=0. 1,2 . . . . Then 99 is the commodity space for 
the infinite horizon economy. 

The generation of firms initially formed in period t will be numbered .j 
=l .2.. . ., JI. The typical firm .i in generation t will have G finite lifetime (\rlj, 
periods), and will have for each period T (T ==O, 1.2,. . .) an iopzll -output pair 
kij,. !-I;; ’ 1 in ~,x~~.+,. VA-reri: (L$, Ojl’ l ) = (0,O) for t < t, and r 2 t + ( wjt - 1 ). 

and hg=O for tz0. 
The typical firm j in generation t will then have, for each period I-, a net 

= bfl -(if, in Y,, where J$ = 0 fOOr T XI t alld T > t + (\%‘jt - 1 )* 
for a typical firm is (I~, = (a;, Llj,. . . .) in 9. whose 

onents are zero outside the firm’s lifetime, in the sense indicate;; a 
Similarly. an output program and a rlor oratput yrog~~nr for the typical firm 
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are hj, = (!I$, 6jt, . . . ) and J’jl= (J$, yf, . . . ), both 
dimensional linear subspace of 29 spanned by 
59. 

l~omputil ire tyuilihrium 3 

m <!J. Let !‘/jl denote the finite- 
the net output programs J*j, in 

An aggregate input hurdle in period z is denoted by 

r Jr 
d= cc ($9 r 20. 

r=Oj=l 

An uggregute output bundle in period (r + 1) is 

r=Oj=l 

JO 
and b” = 1 by0 = 0. 

j- 1 

An aggregate rwt output bundle in period z is 

T Jr 

r=Oj=l 

Li = f f ujr = (UO. d, . * . ) in ‘9 ’ , 

r=O jcdiJ 

/I= i i hj,=(hO,h’,...) in 3, 
r::() j= 1 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

x Jr 

r:=Oj=l 

[Clearly. J: = (ho - cl’, b’ -- (I’. . . . ) is in 9.1 e 
For each firm j in generation t, a te&olog~~ set .Fjt+ on R: x Rr++ 1. defines 

the input-output pairs which the firm can obtain by production in period T. 
An input-output pair (L$, hJ: ’ ) is technologically feasible it’ it belongs to -Tit. 

The following assumptions on the technology sets PY;t will be used: 
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(T.3) (a, ~)E,F;~ and Ci &la, 0 5 15’ 5 b, implies (a’, b' ) E Fjl (free 

disposal). 

.4) (Q, b)E 3fl, and GI =O implies b = 0 (impossibility of 

production). 

(T.5) yil is closed and convex (continuity and non-increasing returns). 

For each firm j in generation E, a production possibility set qt defines 
net output pr ograms ~jl which the firm can achieve, i.e., 

free 

the 

The following consequences of Assumption T for the sets I$ may, then, be 
noted : 

(Y.1) qt is independent of the behavior of any other economic agent. 

(Y.2) The null net ouiput program is in 5,. 

W3) jljr has a convex, free-disposal hull.’ 

(Y.4) ql is closed under pointwise convergence.2 

(Y.5) If j-j, S Yj,, and !vir is bounded below, then Jjr is bounded above.3 

Aggregate production possibilities for the economy are defined by 

The following consequence of Assumption T for the set x may then be 
proved : 

1 el?lmLl 2.1 I”’ (I!!2 )-( X5 ) hold, then Y is closed under pointwise cowevgence. 

PIW$ Suppose a sequence of programs (“)J in Y converges pointwise to 

*The free disposal hull of Y,il is the set {y E ‘~jt 1~ 5 y’ for some J’ i3 5,). 
‘A sequence of programs (“IL’ converges pointwise to a program J* if each component of the 

$ ector ‘“‘J converges to the corresponding component of J*. 
exists n, (t, E ) such that for n > n,(t), !(“)JJ - y*’ 1 

Formally, given I and E > 0, there 
CE. When the vectors are confined to a finite- 

dimensIona subspace, pointwise convergence is equivalent to ordinary Euclidean convergence. 
‘CItherwise, there is a sequence (“‘J’jr E 11, such that (@J$; is bounded below, but ““J$ ’ ’ is 

~bQ~~d~ above. This means by definition of the Yjt, that for some 7 IT’, @)a:, is bounded 
is unbounded above [(“)I$+ 1 1 > 1, and (@‘a;,, (“)I$’ ’ ) E Y .,. Define 

In’/j;l+ 1 = ““f$-+ 1 /I @‘)/J;; ’ 1. 
(“‘zj, 

Th en. 
is bounded, 

by (T.2) and (TS), (‘n’c$,(n)~~~ ‘)E Fjr and (%f, 
and I’“‘/$,+ ’ I= 1. Hence, there is a convergent subsequence of H lcall it I: 

InJzj, +O, and ‘“‘pj,’ ’ +/?. By (T’S), (O,fl)EFjr. But IflI = 1, which violates (T.4). 
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j%+?. There exists a corresponding sequence (“$, E Yi,. such that (n)!. 
= C:= 0 Cj”L * (“)yjl* 

Suppose each (“)Yjt sequence is bounded. Then, it has a subsequence which 
converges pointwise to some Jjr in Yjt by (Y.4). The Cantor diagonal: process 
can then be used to extract a subsequence converging pointwise to 

CE() I;;() _Fjl in I: But C~~C::~~j~= _ by the supposition that @)y converges 
pointwise to 4;. Hence, y is in Y: 

Alternatively, suppose for a subsequence (denote it by tz again) (‘*)yjr is 
unbounded. If (n)yjt k bounded below, (n)Jjf is bounded above by (Y.5 ). SO, 
under the supposition that (“)yjr is unbounded, there is a first period z in 
which (“)yjr is unbounded below. Since T is the first period this happens, 
(?I) ,t - 1 l 

J IS bounded below, and hence (“)y’ is bounded above. Thus (“)J’-+ - x 
as n-,a (for some component), contradicting the hypothesis that (‘)J. 
converges pointwise to j? Q.E.D. 

A rzet output plan for this economy is a complete description of the net 
output program of each firm, and may be represented formally as a sequence 
of vectors of these programs: 

s= (,,Y,._J 10,...,yJo,~'11,...rYJ,~!'12~..*)~ 

where y =CF= o z; I ~‘jr is the aggregate net output program. 
A net output plan is possible if each yjf is in the corresponding production 

possibility set I$. 
A possible net output plan s is said to be qfficietjt if no altelnarive possible 

net output plan s’ yields an aggregate net output program which is at least 
as large in every component and larger in at least one component. That is, if 
y and y’ are the net output programs associated with s and s’, respectively, 
and y’gy, then y’= y. 

An aggregate net output program will be called possible (eflkient) if it can 
be associated with some net output plan which is possible (efficient). 

2.3. Consumers 

The generation of consumer units intially formed in period t will be 
numbered k = 1,2,. . ., K,. The typical consumer unit k in generation t vcliii 
con.atne in each period r of its finite lifetime @tkt periods) a non-negative 
comriiodity bundle cXt in G!& We define a finite-dimensional linear subspace 
gkt of 99 spanned by the consumption programs ckt = (c:~, CL,, . . . ) in 9, whose 
components are zero outside the consumer’s lifetime [i.e., ~‘;1, ==O for t <t, and 
z > t + (ctkt -- l)]. In order to avoid complications of questionable economic 
interest, assume that there is a positive (finite) number cx such that x &kr for 
all k, t. 



The typical consumer unit will have a desired set D,,, a subset of %,,, 
consisting of the non-negative consumption programs on which it can 
subsist. On the desired set D,,, the consumer unit will have a preference 

preordering (i.e., a complete, transitive, reflexive binary relation) &. For 

J. _v’ in Dkl. w use the notation y >kr 4” !resp. y -kr J’) iff ykkl y’ and not 
1~’ zkr J* (resp. _V kkt 1” and _v’ kki J). We shall employ several or all of the 
k~llowing conditions on preferences. 

A.iSlilll~lt iOil P.” The desired set D,, and the preference preordering kkt have 
some or all of the following properties for k = 1,2,. . .,K,, and t =O, 1,2,. . . 

i P. I ) Dk, cd &; iw ifdepefdent of the cofzsumptiofl prografns c$ oft141 
constmer units. cd the net output programs qf.firms (no externalities). 

( l’.?) D,, is conrex md mofwtofze ahOt’e (k.. ckt E D,,, Ch, E %fkt, alId CL, 2 ckl 

iflrply c;1, E D,, ), mtl the wt qf’ fzofi-flegatire consufvptiofi uectors ifi %&, 
which are not if1 D,, is closeti ufder poifltwise convergence. (This set 
may be empty.) 

f P.3) At 11flJ C’k, E Dkr. the upper contour set ukr (c&) = .(c;, fz Dk, 1 CL, & ckr) is 

dosvd undtv pointwise wfwet’gefwe, relative to D,, (continuity of 
preferences ). 

(P.4) At un)* ck, E D,,, the lipper cofitour set &&i\;) is cofivex (i.e., if 
L”, c”‘E D,, sd.L$j- c” kkr $,. d d’ & ckr, then &’ -k (1 - 8)c” kkr ck, fbr 0 

< n -: 1 ). 

(P.5) lf’C;(, 2 (‘kt in D,,, then c-it E U (ckt ) (monotonicity of preferellces). 

f P.6) At arry ck, E D,,, there exists CL, E D,,, which is strictly preferred, i.e., 
ck,$ P!,, (c;i,) (non-Muration). 

(P.7) At uq- c’~,E D,,, thef-e exists a sequefwe @‘ckr E Dk, cowergifig poifltwise 
to ckI such that each (n’ckt 
saturation). 

is strictly prejkrred to c,, (local non- 

,4n qgqk:e cofisufnptiof~ hurdle in period 5 can be defined by 8 (in S,), 

r=Ok= 1 t=r---Zk= 1 

An aggreguire consumptiofl prografn is then given by 

(2.7) 

%e~ral comments rn;ly bc useful in clarifying these properties. If D,, consists of all 
cons~mptdcn programs wilich are positive in one subset of commodities and non-negative in the 
~cmaini~g commodities over the liietinx of the consumer unit, the,] (P.2) is satisfied. Pf 

s are rqresentable by contin:lous utility functions, then (P.3) holds. !f there is some 
which is essential to subsistcr~e, divisible. and always desirei, and II,, is as described 

fl prefererkxs 5atisfy ( ?.h) and (k.7). 



22 h’t 
.- L- cc Ckt = (COJ,...) in 5% (2.8) 

t=Ok=-I 

A distribution plan in this economy is a complete description of the 
consumption program of each consumer unit, and may be represented 
formally as a sequence of vectors d’ = (c, c 1 o, . . ., ckoO, q I, . . ., ck 1, cl 2, . . . ), where 

1 

(2 9) 
t=Ok=l 

is the aggregate consumption program. 
A distribution plan d is desirable if each ckt is in the corresponding desired 

set D,,. We let D denote the set of desirable distribution plans. A distribution 
plan li in D is said to be Puwto prejh~hle to a plan d’ in D, if ckl &CL, for 
all consumer units, and c’kt >kt~;, for at least one consumer unit. 

2.4. Feasible allocations und Pawto optima&J 

The economy is assumed to have a vector of non-produced resources, a 
non-negative bundle in St, which initially becomes available in pericd L This 
bundle is denoted by e’, and the resource suppl_v program is denoted by CJ 
= (e”,e1,e2 , . . .>. When J’ is a possible aggregate net output program, c = _V + (J _ 

will be termed a possible supply program. 
A possible net output plan s., a desirable distribution plan ~1, and a 

resource supply program e define a jksihle allocation II= (s. d, u) if the 
material balance condition c = 1; +u is met by the aggregate consumption 
program and net output program determined in d and s, respectively. We let 
H denote the set of feasible allocations in this economy. 

A feasible allocation 12 is Pureto optimul if there c 1~o Pareto prefer&le 
feasible allocation h. It is short-run Paretc/ riptima/ if there is no Pareto 
preferable feasible allocation E, such that e\ery consumer unit living on or 
after some period L gets the same allocation 111 6 and in IL 

3. Coticepts of price system, cquili;brium, non-decomposability, and 
reachability 
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continuous on S1 we call P a vuluation jiwction [see Debreu (1954)]. When 
P is representable as an infinite sequence 0 = [p’) with P(c) =X:0 ptct for all 
c” in % e 1, p is termed a price sequence. In this case the notation p l c =xE o ptct 

is adopted. 
Consider the subspace 9J1, of S1 consisting of all sequences c in +??I which 

KUX a _fide number of non-zero components. Then, for any price-system B 
4;rll 9 e 1. there exists a (possibly zero) sequence F= (p’) which is a tinique 
representation of P on C!&-? If C!& consists only of programs with a finite 
number of non-zero components, any price system P on 3, will have a 
Unique representation as a li0+zero price sequence p== (p’). 

We shall, now, consider a number of possible concepts of a competitive 
equilibrium in our infinite horizon economy. 

A feasible allocation h, and a non-zero price sequence p = (p’) define a 
competitiw equilibrium (6, p) if: 

(ij For all k= 1,2 ,..., K,, atid for all t=O, l,..., 

(ii) For all j= 1,2 ,..., J,, and for all t=O, i ,..., 

Zf 1 p &+’ -pfqtDpr+l b-p”a for (a,b)EYjt, zz0. (3.2) 

Eq. (3.2) is equivalent6 to the condition that for all j= 1,2,. . ., J,, and for all t 
-0, I,. .., 

(3.3) 

5To prove this. note that on the subspace ?JIH of %JI ‘consisting of all programs which are zero 
a&r any period H, the func:icrn P has a unique continuous representation (P$,,. . ., P$,)) 

Dunford (1958, p. 245)j. This is also true for SIH _ , , yielding prices (PpH _ 1 ), . . ., Pit I ii). But 
IgIH _ 1 is itself a subspace of gIH, implying PfH _ ,, = Pf,, for t =O, . . ., H - 1. Induction on H 
compfetes the proof. 

‘F,: = (_$. j$ . . . ) = (6; - a$, hjr - a;, , . . .) with zeros outside the firm $3 lifetime. Hence 

p.-,‘j,= i p’(bj, 
r+w,, 

- UfI ) = c p* (h;, - a;, ) 
r=o ?=l 

r+o,.- 1 
=p’/+,+ 1 (pf+‘hf;’ _p’u;,)=t+~J’(p’+ ‘Qf 1 _PfLlfr) 

r-t ?=I 

1 “,,-I 

5 c (p*+‘l$+1 -p%$:)+p’h;, [by (3.2)] 
r=f 

1 +wfl 

= 
c 

py$ = p * jj, proving (3.3). 
1=t 

~“~~~~~~c~~c~y, if p *J,, 5 p * yjr, Jjr E Yjl and (3.2) is violated for some P* and (u, IY)E Yjt, then 
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A competitive equilibrium (h, p) is a Malirwtiud equilibrium if, for every 
feasible allocation 6, and tine period L such that all consumer units living 
on or after L receive the same consumption program under either I? or h, it 
follows that 

f p’(jy?)~O. 
t=o 

Condition (3.4) for a Malinvaud equilibrium can be interpreted as 
requiring that amang the set of a.11 feasible aggregate net output programs 
which differ from p in at most a finite number of components, present value 
is maximized at 2;. From material balance. feasible allocations :? and 16 satisfy 

t p’(-j?-f)= i #(s-c’). 
t=O t=O 

(3.5) 

Hence, an equivalent interpretation of the Malinvaud equilibrium is that 
among the set of all feasible aggregate consumption programs which differ 
from E in a finite number of periods, F Iresent ‘value is maximized at C. 

A competitive equilibrium (ti; p) is a strolzg competitive equilibrium if, for 
every feasible allocation 6, the following condition holds: 

4 h’l 

lim inf L C p . (&, -s;& 0. 
1+x t=Ok=l 

(3.6, 

Condition (3.6) can be interpreted as requiring that the incremerrt;il 
‘present value’ of consumption associated with a shift from li to moths 

feasible allocation /i (which may differ from 6 in infinitely many lDeriods) INN il 

be positive. 
Note that it is not necessary in this definition that ‘present value’ be ;1. 

well-defined number. A valuation equilibrium imposes the same economic 
conditions, and requires in (3.7) that ‘present value’ be well-defined. Thus. .I 
strong competitive equilibrium (h, F I defines a vahtion qzrilihiurn if the 

consider J$ E 5, given 1 y 

(6; - a;, bjt - Z;,. . . ., 6J,* - ’ -- u, b - Cj,l, r;].,’ + ’ - u;; + ‘. . . _ . 

Then 

P * Yjl -p.yjr=[f*-’ ~-a~+p**.b)-[~L*-l(-~;- ‘) tpT’&*] 

= (p’*&f*- 1 a)-[I’~*~,*-P”-‘~~:-‘]:.O, 

a contradiction. 
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non-zero price-sequence p= (p’) is a continuous linear function on a to- 
pological subspace of 9 which contains the set of all possible non-negative 
net supply programs c ==_ V+ e, and the inequality 

(3.7) 

hoids for this set of net supply programs. 
A competitive equilibrium (6,)‘) has the irzsignijicant future property if 

lim p’af = 0 and lim p5? = 0. (3 8) . 
r-+3: 54 -r 

us, (3.7) imposes the requirement that the values of aggregate con- 
mpt.ion and inputs in period z go to zero as z goes to infinity. 
We shall now discuss how the various concepts of competitive equilibria 

are inter-related. The interested reader might compare (3.2), (3.4), (3.6), and 
3.7) to the definitions of efficiency prices of different ‘types’ discussed by 

P&g and Y aari ( 1970). Clearly, one set of implications is immediate from 
the sequence of definitdons: F aluation equilibrium implies strong competitive 
equilibrium Implies competitive equilibrium, and Malinvaud equilibrium 
implies competitive equilibrium. Some less apparent implications will now be 
derived, and in such derivations (which are only sketched) some accounting 

entities will be useful. 
Let &- be the value of aggregate consumption from period I through 

period T at pi ices p = (p’ ). Recalling that cr = e5 + f, 

7’ 

E C pf(er-rJf) 

5= 0 

(3.9) 

Using (3.9), ‘we can show that strong competitive equilibrium implies 
.~~~~~j~z~~fu~i rquihium. Sup!pose there is ir feasible allocation K and a period L 

that ever;/ consumer unit living on or after L receives the same 
umption program as in h. Colnsider the identity 

(3.10) 

. r h and ,?, the right- side of (3.10) is the same, implying 
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L L Kl I 

c ( p’ C-F)= C C ~(~k,-i~k,)=lim inf i 5 P(C~~---?J. (3.11) 
r=O t=Ok=l Ia r r=Ok=l 

Then (3.5) and (3.9) imply that (3.4) holds. 

Next, we shall show that u valuation equilihrilrm (fi, p) hers the ir?s,ig;d/i’wnt 
fiture property. In order to verify (3.8) note first that 

pf= C p’(c’+e’)z C prcS. 
5= 0 r=O 

(3.12) 

By definition of a valuation equilibrium. py is finite. From (3.12) 11: foIIows 
directly that 

lim p’c’ = 0. (3.13) 
S-+X 

lf, now, lim,,, sup p’aT + 0, there must be some S >O and a subsequence 
(retain the same notation for the subsequence) such that pW ZS for all t. 
Choose some T* such that x$ T* prcT x: d/2 and define ? = (F j xs 7 = C’ for all 
zsT*; eT*+‘=bT*+l+eT*-tl; and F=@ for all z>T*+l. Then 

ptz 5 prcr+pT*+ la*** l z_ f prc5 -t- s/z. 
r=o ‘r = 0 

(3.14) 

But (3.14) contradicts (3.7), implying 

lim p?.? = 0. (3.15) 
r-*cE 

The next interesting implication is that (7 competitive equilibrium with the 
insignijkant futtire property (3.8) is a strong compeMivP equilibriz4m (3.6 1. 

To see this, use (3.10) to get 

l+Z 141 

c”,,-c,r)= c P’(c’--c;‘)- 2 i,‘(c”-c”) 
t=Ok=l r=O r=l+ 1 

1 h’t x 

Now use (3.9) to get the following bound on the first term on the right side 
of (3.16): 
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(3.17) 

y (3.18) is now derived by using (3.17) and dropping a term 
side of (3.16) thal is negative, 

I+2 

- c p’c’+ i 5 i p7cl 
1---l+ 1 r=Ok=lr=l+l 

(3.18j 

e ixignificant future property to get (3.6) from (3.18). 
pks wilE now be used to illustrate the distinction between the 
ns of competitive: equilibria. In both these examples we considx 

corny IGEE? a single commodity and no net production. There is an 
er in period 0, disappearing at tJhe end of that period. A single 
it is barn in period t 20, disappearing at the e:nd of period t + 1. 
nction of all the consumers is the same, namely the sum of 
in two periods (the utility of the old consumer in period 0 is 

t+umption in period1 0). 

Let e’ = 2 for all1 t 2 0. We examine the following allocations: 

In each period t 20, the available sapply (two units of the 
ity I k divided equ,a!ly bfetwecn the two consumers. 

The available supply is distributed entirely to the ‘old’ 
er in each period t 20. 

Assuming that the good can be stored free without any 
ciationt the ‘old’ consumer in period 0 gets 1 unit; all other consumers 

:ts in their ‘old’ age. 

Ilocation (A) with ilB) shows that (A) is not Pareto 
2 p=(l, I,1 ,... ), the allocation (A) is a Malinvaud equilib- 
absence of prodluction allows (3.4) to be satisfied automati- 
Maiinrnud equilibrium need not be Pareto optimal. The 

[Al. is JXV, however, a strong competitive equilibrium, as can be 
from z comparison with (IB). At p = (1, 1,. . .) the allocation (C) is a 

but azol a Malinvaud equilibrium, as can be 
ison of” (A) and (C). Finally, the allocation (B) is an 
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example of a strong competitive equilibrium which is rot a valuation 
equilibrium? 

Example 3.2. Let e” = 1, et= l/t for t 2 1. The available supply is allottcn to 
the ‘old’ consumer in each period. At the price system p = (1, 1,. . .I, ;ilis 

allocation is a competitive equilibrium. It is also true that prct = l/t for t 2 1, 
so that the insignificant future property holds. However, cT,o ptct = 

1+c,T,1 l/t and this goes to infinity with ?: Thus, we have an example of 
a competitive equilibrium with the insignificant future proper: y that is not a 
valuation equilibrium. 

For a number of simpler models, including the one we considered in 
Majumdar-Mitra-McFadden (1976), it has been shown that a competitive 
equilibrium that is also efficient is necessarily long-run Pareto optirn& or 
that short-run Pareto optimality together with $ng-run) efficiency implies 
long-run Pareto optimality [see Cass and Yaari (1967, p. 249) and k9se 

(1974) in this connection]. Indeed for ‘interior’ programs in models in which 
the technology has appropriate differentiability properties, some remarkably 
strong implications can be shown to hold, as our earlier exercise seen-is to 
indicate. For treating other aspects of intertemporai welfare economics, it 
might be useful to start with such a. simple model. The next example shows 
that in general efficiency and short-run Pareto optimality need not imply 
Pareto optimality. 

Example 3.3. Again we consider an economy in which a single consumer is 
born in each period, living for two periods. Similarly, in each time period a 
‘generation of firms’ (consisting of a single firm) is born, living for two 
periods. The technology set 3 for ~11 firms is the same and is given by 

,;‘_={(a,b)>=O:Azsa,Bzzb for some z>O}, - (3.19) 

where 

A=(; ;), B=(; f). 

Clearly the second activity has the second commodity as a non-depreciating. 
durable capital good which generates a net production of the first 
commodity. 

The preferences for consumers are given by utility functions (for t 2 0) 

‘Let k denote allocation B and let h denote an alternative feasible allocation in which a 
proportion 8, of the aggregate endowment in period t is given to the tth consumer unit. Then 

c ;N_0p~&---c*~)= -8, and (3.6) is satisfied. Since cF= O p’c! =H, p * I; does not exist, and 17 13 
not a valuation function. 



6Y1,(c~\,.cl,;’ ) = : (‘f ,‘--Ji + zct + 1 c’ + l/2’ + 1 + 2[.’ + 1, (3.20) 

c Y- Qcncl;tes consumption t>f compodity i ( = 1,2 ). 

r~mmx -upply is gjven by co = (0.1 ). 4’ = (0,O) for t > 1. Consider the = 
iven hy C;r’=(O. I)- ;zO; P=(O,O). ?=(&O) for tz0; N+l=(& l), 

0; ~3,,==qo.o,. t;rO: ig,;*=($,o), tzo. 
II that the allocation IS fkasible and &cient. Furthermore, it 

rt 47411 Pureto optimal. 
~~-~~~~~. it is not long-run Pareto optiaml. Consider the allocation given 

67, f = (0,O ). c”l; 1 := I[? + *, t2_0. 

_ f ; can be checked that this allocation is feasible, and has 

c’,,(?l,. (“1; l )> CT,,(l?J,‘: 1 ) for all PO. = 

a ~~:!!l-Lie~~~r.tlpOSMhijil!. wd reuchabilit) T&. 

zisible allocation Ii= (S, Z, e) is non-decomposable if, for each partition 
lsumer units into two non-empty subsets I, and I,, there exists 

allocation g= (S, d, e), with the same net supply program, which 
reto preferable to the allocation 6 for the consumer units in I,. 

of 
a 
is 

is condition implies, in particular, that no consumer is satiated and that 
any two groups I, and Iz, there exists at least one commodity 

by some unit in I, which is held by some unit in I,. Non- 
ludes the ‘extreme’ distributions in which some unit 

sistenee or some oth,er unit has the ‘largest’ feasible consumption 
t condition for non-decomposability is that there exists a 
essential and always desirable to every unit? and that at 

art survives for more than one period. 
le aggregare net output program 4; and a resource supply 

f -+-e is non-negative. Then, (y, e) is reachable if for 
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any positive scalar p there exists a possible net output program j such that ? 
= f+ e is non-negative, and there is L(jr ), such that ? = ,u? for t > L(p 1. 

Reachability implies, roughly, that starting from an arbitrarily small 
proportion of the original resource program, one can, by pure accumulation 
reach, after a sufficiently long term, the path of an originally possible net 
supply program. In an economy in which all commodities can be produced, 
resources do not limit the long-run growth rate, and consumption requires 
the diversion of productive commodities, feasible allocations will generally be 
reachable? 

4. Equilibrium, Pareto optimality, and efficiency 

4.1. Equilibrium is optimal 

We shall now prove that a strong competitive equilibrium is Pareto 
optimal. 

Theorem 4.1. Under (72 ), (PA ), aid (P.7), ~1 srrorrg competitive tquilitwium 

(h, p) is Pareto optimal. 

Proof: Suppose not. Then, there is a feasible allocation I!‘, which is Pareto 
preferable to 5. Then i;kt zkt C,, for each consumer unit. We claim that this 
implies that p l &, z p . Ckl for all k, t. If not, then p l c?,, < p - t$., for some k, t. By 
(P.7), there exists a cLl in a sequence converging to &, such that p l ci, 2 p * tkr 

and cL1 >ktFtit. Since &, &&,, so I‘;, >klFkkr, contradicting (3. P ), and cstablish- 
ing our c!aim. 

We also know that & >kr?kl for some k. L We claim this implies that I> .Ck, 
> p - Ckr for this k, t. Tf not, then p - cfkl 5 p Q i& implying Fkr &(fkt by (3.1). a 

contradiction, which again establishes our claim. 
Hence, from the above two results, we know that there is 0 > 0 such that 

t: g p * (&, -L&)2 0 >O for all I sufficiently large, 
r=Ok=l 

contradicting (3.5) for a strong competitive equilibrium. Hence (h, 13 B is 
Pareto optimal. 

4.2. &c&able optima1 allocations ure equilibrici 

A partial converse of Theorem 4.1 can be proved when :I Paeto-optimal 
allocation is reachable. The resulting price system wiil define a valuation 
equilibrium, implying the existence of a finite present-value associated with 
each aggregate consumption program. 

“Several examples of economies with this property are given in McFadden ( 1967). 
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Under (‘XI )-( i1Y ), and (P.1 )-(P.6), if a feasible allocation h is 
reachable, non-decomposable, and Pareto optimal, then there exists a 

e wquewe p such that (h,p) is a valuation equilibrium. 

Let G in %’ denote the free disposal hull of the set of possible 
te net supply programs, i.e., G is the set of all c sy + e, where y is a 

regate net ou:put program.. Let Go denote the subset of non- 
supply programs in G andl !et % denote the real linear vector 

efine .F = G i-i :%I All programs in G, are contained in 
all eEcient programs in F are possible aggregate net supply 

;;tms. We call F the set of admissibj- - Sc aggregate net supply programs. 
t G is convex., and contains its free-disposal hull, and Go is 

closed and bounded by Assumption T (and hence, Lemma I). 
and X satisfy Assumption (A) of the appendix. Hence, by Lemmas 

x, there exists a norm S on 3, such that 5F is a 
CE~“(C~~ and S(c)5 1). 

e, for each consumer unit k in cohort t, the finite-dimensional 
Sin;:e h= (S; &e) is Pareto optimal, and non- 

osable, therz must exist for any consumer unit kt an alternative 
is Pareto preferred by the consumer units other 

ctly inferior for kt. Hence by (P.3), the zero bundle 
al~g with (P.2)--(P.6), imply that a is ‘non-extreme’, 

composable’, and that preferenEres &sfy, at a, Assumption (B) of the 

ce Cr is reachable, given any p >O, there is a possible net output plan $ 
that c”- j -I- e is non-negative, and c” and PC dre identical after a finite 
er of periods, e(p). Hence, one can take & = pFki for t 2 L(p), and so, 

otheses of ‘Theorem A.8 of the appendix are then met; so, there 
egative continu0us linear functional on X, such that: 

(?) = 1 for all CE F, and 
( i;kl ) implies ckf && 

rets Optimality implies efficiency. Hence, if (P.71 is ass:.lmed. WC 40 not 
at :he alhxation h is efficient. 
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1p has a unique representation as a price sequence p = (p’, pl, . . . ) on the 
subspace X, of T consisting of programs with a fin!te number of non-zero 
components. Since D,, is finite-dimensional, (P.6) implies that p is a non-zero 
price sequence, satisfying (3.1). 

For any Yj, in I$, 

or 

so (3.3), and, hence, (3.2) are satisfied. 

Since limlO+ m s(z&, ct; 1 kr C )=O, continuity of the linear functicnal P 
implies that 

For c E G,, non-negativity implies 

and p is bounded on G,. Since Go spans ?I, p is a continuous linear 

Taking limits on both sides as t,-+ x, 

“Since c’EG,, P(C)zP(c), write c=(:,‘,c~ ,... )=(c.~,(.’ . . . . . c~‘~~.O.O ,._. )+(O,O . . . . c’~‘*‘.c~‘~‘*~... t 

= c’ + c”. Then 

10 1 0 

P(c)-P(c’)+p(c”)~P(~.‘\= C p’c’, :. C p’c’sP(((_) for each f,. 
r=O 1=0 

Non-negativity implies that lim,“, r x:;o p’c’ 5 P(C J exists. But lim,” _ , c:“. (, /)‘(.I = 1~ c. f-i~mx 
p .c=liq(.., I )J:,p’c’s P(C). 



on X,’ ’ and p - c 5 p l C= 1 for c E Go. Hence, p is a valuation 

inal!ly, note that for any feasible allocation, E, one has xiE0 1:; 1 Fkl in 
lim,o, I C:: o xf1; I p l ct,, = p l c’= < 1. Hence, (I;,p) satisfies (3.5) for 

competitive equilibrium, and is, therefore, a valuation equilibrium. 

of admissible solutions in many problems in economics and 
eory can be characterized BS a subset of the non-negative orthant 

inea; vector space.’ 3 When the admissible set is convex and 
’ bounded, and all solutions smaller than a given admissible 

are also admissible, we establish the existence of a norm on the 
anncd by the admissible set such that the admissible set coincides 

non-negative programs in the unit sphere. This result is closely 
to the theorem of Kolmogoroff (1934) that a topological linear space 

orphic to a normed linear space if and only if there exists a 
ighborhood of the origin. The norm topology introduced 

s homeomorphic to the core topology of a linear space introduced by 

untable non-empty set r consider the linear space (12 of all real- 
ctkns on r and let 82 = f y E 4 Iy(?) 2 0 for all t E Ti, denote the non- 

!r/. A partial ordering 5 on JY is defined by yz y’ if and 
y’--YE&! for y,yk 3. 

in !P converges pointwise to y0 in ‘Y [notation: yn -+t yO] 
tE r there exists n(E, t) such that ly,,(t)--yo(t)l CT for n 

A set y in SY is pointMse-closed (p-closed) if {y,) c k: y,, -+t ~1~ 
II The set I’ is pointwise bounded (p-bounded) if .(y(t)lyc yl, is a 

ounded on GO9 hence continuous on G,. Since G, spans X, given c’ E X, write c’ 
6 +.‘, s.:here c, E G,. Then 

1s defined on .Y‘, and continuous on Go. Hence p is bounded on .T. Hence p IS 

mple for economics is the proble-- lII of optimizing a social objective function 
programs of non-negative consumption of commodities which are feasible in a 
over an infinite horizon. 
is *the Cartesian product over T of the space of real numbers, and pointwise 

convergence in tlhe product topology of 3 when the real line is given its 
ntwise closure (resp. boundedness) cortqxmds to closure (resp. bounded- 
apology. If sequences are replaced by generaiized sequences, nil the proofs 

Tis an arb’t t rary non-empty set. not necessarjly countable. 
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bounded set for each TV 7: The set Y is nronotonr h~hw relative to a set Y’ 
containing Y if YE Y, y’g Y’, j 'Q imply Jv’E k: 

The (p-closed) COY~IJ~X Izufl of a set Y is the intersection of ail (p-closed) 
convex sets in ,?P containing X 

Suppose a non-empty set YO is given which is contained in the IMNF 
negative orthant $2. Let Y1 denote the convex hull of YO, and let .‘x’ denote 
the real linear space spanned by Y1. Let YZ denote the intersection of all sets, 
monotone belaw relative to .2X, containing Y1. 

ProoJ Since YZ is convex, any plaint $ E .X’., j + 8, can be written as 

Then, for 0505 l/(2, +a,), 

and 13jl~ Y2 by monotonicity. Q.E.D. 

Define the support function of Y2, +(y)= inf$ [p a positive scaiar. 
(l/p)y~ YZ). The function C$ exists and is non-negative, Positive 1int:;t1 

homogeneous, and convex [cf. Dunford and Schwartz (1958;]. Defin: ii(~) 
=: d(y) + 4 ( - y ). Then, b ( y ) satisfies 

ii) 4y)ak 

(ii) 6(y+y’)g(y)+6($‘), 

(iii) 6(ry)=1@(yX 

for y, y’ E X and any scalar 01, and is a pseudo+zorltz on ,‘x’ [cf. Kelley ( 1955, 
p* 18)l.l” Note that YE YO implies d(y)5 1, and that S(y)< 1 implies ~EI Y2. 

Lemma 2. If‘ Y0 is p-bounded, then 6 (y ) is u norm on 2’; Cu., r * 0 implies 

S(y)>O. 

ProojI Clearly, Y, p-bounded implies Y1 p-boundecl. If j. #O, then _?lt,, ) = 0 

for some to E r We can assume (by changing the sign of j if necessary) thal 
_? (to ) > 0. By p-boundedness, there then exists a positive scalar /f such that 

j+,,)+sup (J’(fJYE yIi,, implying (l/p)j@ Y1, and 6(_?)~r/4~)~br>0. 
0 ED. 

‘“Condition (ii) fbilows from the convexity of @; condition (iii) follows from the homogencit> 
of 4 and the sign-symmetry of ii. 
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The norm s atisjies the bound lj(t)iSj(j)o(t) for any jh%, 
1434 aft )-Wp;y(t) 

.f’ is a S-Cauchy sequence if lim,,,., X 6(y, - y,) =O. By 
Lemma 2, if ( y,) is a S-Cauchy sequence in 3, 

uence is a Catchy sequenlce ir! the real line for each t E I: 

ists a pointwise limit ,y, E J? of ( y,) ; i.e., yn -+t y,. 
I1 pointwise limits of &Cauchy sequences in 3, 

/I = lim 6(y,: ‘r, [ y,,! = d. S-Cauchy sequence in X with y” -+I y 
1 

direct verification car; be made following IS&he (1969, p. 126, 

lts in the lemmas and corollaries above remain valid if Yi is re- 
as the Pclosed convex hull of YO. 

I” YI is p-closed, p-bound Id, and monotone below relatiw to 52, 
I Z ~~~~t~~ the S-nwm is complefe, h., X = 9. 

Suppose f~ 9. Then, there exists a S-Cauchy sequence {y,.} in X 
,_E. Since “(y,) is bounded, we can assume !by re-scaling) that 

Then, $( y,) < 1 and 41( - y,) < 1, implying y,, E Y2 and - y,, E Y2. 
y definition, there exist yk, yip YI such that y,s: yk and - y,S yi. 

ounded, there exists a subsequence (retain .lotation) such that 
with yb, yg E YI by p-closure. Then, jis y; and - $ s y: 
the partial ordering 5 . Mint: j’ and j” by j’ (t ) 

; and ~“(t)=min(O,j?(t)~. en, ()sYsyb 05 -j”r y;;, 

the monotonicity in L! of that E’, - j” Hence, j = $’ 

e space of all inear functional on ?Z which are 
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contjnuous in the S-norm. Similarly, let A?* be the space of all 8-continuous 
functional5 on ??. 

Lemma 5. 1’ Y0 is p-bounded, then for each XEP, there exists 2~ J$‘*, such 
that x(y)=?(y) for all y&8”. 

Pro05 See Kothe (1969, p. 158). 

Let r-F n f2 denote the non-negative orthant of X, and let r* 
= (X E g* Ix(y)20 for all y E r] denote the non-negative orthant of .@. 

Lemma 6. If Y0 is p-bounded, ar;d a corwex subset Y3 oj r has S ( y ) 2 1 jbr all 
y E Y3, then there exists P E r* such that Ply) 5 1 *for all y E Y2 and 
_fr,r all yE Y3. 

Yr(oo& The sets Y3 and Ys = j ,y~,5)“Iysy’,S(y’)< l> are disjoint since 
ye Y4 n r implies 6(y) < 1. Y4 has a non-empty interior. Hence, there exists a 
non-zero functional P E”* and some scalar a such that P(y) g OL for y E Y4, 
and P(y)2_a for YE Y3. Y4 contains - r, impi;ving - AP(y) s 01 for y E r, all 
positive scalars A, implying in turn that P E r*. By S-continuity, P(y)5 2 for 
y satisfying b(y)5 1, and hence P(y)5 a for y E YZ., Now, Yr c YZ2, .K spanned 
by Y, and P#, imply P(j+O for some j;c Y:. Hence, 2 >O. Normalizing 
01= 1 completes the proof. Q.E.D. 

Consider a given subset Y of <!V and a non-empty, fIrrite or infinite, set of 
integers K={klk=O. 1,2,... 1. Suppose a linear subspace 4!Ik cJY is defined for 
each k E K, and define Yk = { y E :‘nlk 1 y E Y I... Let eY, denote the linear space of all 
vectors s = (y’, y1 e . ..) with yk&k, kEK, and define S,={SE.~@~~~E Yk. kE 

4.=CkEKykE Yj. 

We make the following assumption: 

Assumption A 

Y is convex and monotone below relative to 3, and the SC’S Y. = Yn 0 c!f’ 
non-negative points in Y is non-empty, p-bowdud. arid p-closed. 

Let 55 denote the real linear space spanned by Yo, and let F =4 n .f 
denote its non-negative orthant. Define :‘x’k =.?’ n !I/& and r,, = c r, .l(‘k for 

. Since Yk = Y’” n fl z Yo, we have Ykg c rk. Let Y5 = n 3’. Then, Lemmas 
l-6 apply to 3 and Y5? We shall again denote by YZ the intersection of 

all sets in y, monotone below with respect to :‘x’, containing 

161n the statement cf Lemma 6, replace Y2 by . and in its proof, replace Y4 by Y, 
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for each k~ K, a partial preordering & (reflexive, transitive 
on ) cf a subset D, of f I, k given. Define y )Lk y’ (resp. y * k y’) if and 
if yL,y. and not y&y (resp. both J&P and y’&y); y,y’~ D,. Let 

the subset of points. s==(y’, yl,. . .)EY such that y% D, for kK. 
~~‘i~-~rn~ty subset K, of K, define a partial preordering &, on D 
if and only if y& y’ for every k E K, ; s, s’ E D._ Define s&, s’ (resp. 

if and only if s&, s’ and not s’&,s (resp. both s&s and 
.c:].s,,(:‘~ D. Define S, =S, C-T Lb. 

is maximal in S, relative to a non-empty subset K, of K if 
‘zk,S has s’+~, Ss A point &Sl is non-decomposable if, for 

ition of K into two proper subsets K,,K,, there exists s’ ES with 
that ,s’>-~ ,S. For SE& define: the set U,(yk) 

~z~j.4;. The point SES, is nw-cxtwme if the origin is not 
the p-closure of Uk(yk )_ k t: K. 

! consider the following assumption on the relations & for a given 

C/(g)== :y(s)~f Is>@; for Sdi,. 

ax/ma1 in S, relative to K, then U(S) and Y. are disjoint. If, further, 
s, then U(S) is convex, and Lemma 6 establishes the existence of a 

-zero continuous linear functional (in the S-norm) separating U(S) and 
Y& A stronger separation theorem will now be established. 

8. Jr’ (A ) and (B) hold at a point %Sl which is maximal relatice to 
ecompnsable, and non-negatirle. and f limkO, r d (c k E K jk ) = 0, then 

~.~~~~t.~ P E I‘* such that P (y ) 5 1 for all y E Ys, P(y) > 1 for all y E U(S), 

P(y’)sP(F”) crud yk&jk imp/J* y”~~. 

e set Yjq define the support function 

p a positive scaiar., WlOY E u51. 

it follows that 



Consider the function 

We first show that fk(y) is well-defin’ed and bounded above on sets bounded 
in the &norm. Suppose one could find a sequence (y,t in r with S(y,)=< 1 

such that (l/n)y, E Uk (yk). Then, (l/n)y,-+k, contradicting the hypothesis 
that S is non-extreme. Hence,&(y) is defined and bounded on ye r with S(y) 
< 1. By Assumption (B),f, (y) is concave and positive linear homogeneous on 
rand satisfiesf,(y)z 1 for y1~ U(jk) andf&@)= 1. 

Define 

Pk= - 1 +sup(Jk(y$-yk)fyEr, 6(y)S 1;. 

Since 4;” E Y, has ji(2yk) = 2, we have pk = > 1, Since f;(y) is bounded on &,. 11~ . 

is finite. 
Let u=(L’~,z+,... ) denote a sequence of real numbers with a component for 

each k E K, and define a real Barrach space 

V= 17 c )u&=&J)< -t- X.[,. 
iI kcK ( 

Then, V is homeomorphic: to I,, am.l the space of continuous limm 

functionals on Vis 

Let R denote the 
norm 

II W 

Define the set 

1 ~EK I 

real line. and form the linear space IV= Vk R x .‘x’ with 

Since each function .f;i is concave and & is convex, the set 
point (O,O, 0) is in E (i.e., take y’; = .i;:. y2 L y ). We will now 
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there exists (u, Y, y) E E with u 20, r > 0, 
such that fk ( jk ) >, fk ( jk ) for all k, implying 

the maximality of g, and such that &(y(i))= 1 --EC 1. By 
there exists k’~ K and YE &, such that ey -t yk’&&j + 
r 0 c 0 -=I 1. Choose 0 = E/( 1 + S(y)). Then, &(6j) CC, and s’ 

= y”’ +6y has s’>& contradicting the 
and r ~0, y >=O implies that some 

t’ is negative, and (O,O,O) is non-interior to E. 
- 3,O) is an interior point of E. Consider any 

IV - &II 5 $, and define 8, = (Ivk( + 2-lk+ 2’)/j.&. 
yk denote a point in Ykg which satisfies fk(jk 

, j&+)‘,, and define Yap =&.jk + jk. By Lemma 5, 
phere is closed in S-norm, implying that y* 

en, the point (u*, 1 - &(y* - y), y) is in E. But 

,O) is a boundary point of a convex set with a non-empty 
ere exists a non-zero linear functional (z, b, -. P) E V* x R x %* 

br - P iy) 5 0 for all (u, Y, y) E E [cf. Dunford and Schwartz 
@)I. From the construction of E, zk 20 for k E K, b 2 0, and 

and y2~X. Then one has 41 -45(y2))-P(j-y2)~0. 
P(y2)5 P(y) for all y2 E X implies P=O. nut then, 

y, one has fk (yk )-h (jk) = 2-k = !& implying 
t this contradicts the previous conclusion 

zk 10, and hence the supposition that b =O is 
= y” and y, -0 and 2y establishes that b = 

er it’ equal to 0 or 2yk’ for some k’ct , y’+jk for ke 
Qk’)sO and +z,. - P(jk’) 5 0, implying 
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implies 

by the continuity of the linear functional. Hence, at least one zi is positive. 
Suppose not all i& are positive. partition K into sets 

zk>O for k&r; zk= 0 for k E K2. By non-decomposability 
with s’>,,S. Hence, for some KE K 1, jk’>k’ 9”‘. By Assumption (B), 
@jP’ >k. j?k for some 6’ < 1, implying ji, (jk’ ) > 3. Define I*, = 2 - “[.I;( yk ) 
--fk (?“)I. Then, (u, 0,O) E E implies c kEK, z,$k ,< 0, contradicting t _ 
results that zk ~0, 2~~ 20 for k E K, and ckl > 0. Hence, zk > 0 for k E 

Finally, consider y, = j, yt = jk for k E K, k f k’, L’hen 

or 

zk.&(Yk)~p(yk) and zkfk(jk)=P(jk) for k&, ykE&. 

Hence, P(yk)sP(jk) implies _fk(yk)>fk(jk). But yk>kjk would imply ji(y’) 
> ..fk(yk) by ASSUmptiOn (B). &nCe, P(yk) 2 p(yk) implies j”& yk. 

Take y E U(S), and let S be an associated point in S,. Then, .;i ( fk ) 2 fl, ( yk), 

implying P(jk)lP(fk) for kEK. Further fk’(yk’)>f;(,(yk’) for some k’E 
implying P(yk’)>P(jk’). Now, P(j)zlim,o_,, P(xkEX.k_koy”) by the non- 
negativity of the jk, and P(j+hm,O_+, ~(~~.,K,kzk,j~k) was previously 
established. Hence, P(j) > P(j) for all j E U(S). 

The condition &(yz)zP(y2) is obtained by setting yL= $ for Lx K. Then 
&(y2)s1 for y+ Y5 and 1 =P(y) implies P(y)sP(y) for ye Y5. This 
completes the proof of the theorem. QED. 
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